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Abstract High-resolution models and realistic boundary conditions are necessary to

reproduce the mesoscale dynamics of the Gulf of Mexico (GOM). In order to achieve

this, we use a nested configuration of the Hybrid Coordinate Ocean Model (HYCOM),

where the Atlantic TOPAZ system provides lateral boundary conditions to a high-

resolution (5 km) model of the GOM. However, such models cannot provide accurate

forecasts of mesoscale variability, such as eddy shedding event, without data assimila-

tion. Eddy shedding events involve the rapid growth of nonlinear instabilities that are

difficult to forecast. The known sources of error are the initial state, the atmospheric

and the lateral boundary condition. We present here the benefit of using a small en-

semble forecast (10 members), for providing confidence indices for the prediction, while

using a simple optimal interpolation based scheme for data assimilation. Our set of ini-

tial states is provided by using different values of a data assimilation parameter, while

the atmospheric and lateral boundary conditions are perturbed randomly. Changes

in the data assimilation parameter appear to control the main position of the large

features of the GOM in the initial state, whereas changes in the boundary conditions

(lateral and atmospheric) appears to control the propagation of cyclonic eddies at their

boundary. The ensemble forecast is tested for the shedding of Eddy Yankee (2006). The

Loop Current and eddy fronts observed from ocean color and altimetry are almost al-

ways within the estimated positions from the ensemble forecast. The ensemble spread

is correlated both in space and time to the forecast error, which implies that confidence

indices can be provided in addition to the forecast. Finally, the ensemble forecast per-

mits the optimization of a data assimilation parameter for best performance at a given

forecast horizon.
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1 Introduction

The dynamics in the Gulf of Mexico (GOM) are dominated by the powerful northward

Yucatan Current flowing into a semi-enclosed basin. This current forms a loop, called

the Loop Current (LC) that exits through the Florida Straits, and in turn becomes

the Gulf Stream. At irregular intervals (Vukovich , 1988; Sturges and Leben , 2000) the

LC sheds large eddies that propagate westward across the GOM. As oil production

moves further into deeper waters, the costs related to strong current hazards are in-

creasing accordingly, and accurate three-dimensional forecasts of currents are needed.

High-resolution models are necessary to reproduce the dynamics of the area and their

variability (Chassignet et al., 2005), and a horizontal resolution of 5 km, appears to be

sufficiently high to resolve the mesoscale features such as the eddy shedding, consider-

ing the first-mode (baroclinic) of the Rossby radius (Ro ≃ 30 km in the area; Oey et al.,

2005a).

However, such models cannot provide accurate forecasts of mesoscale current fea-

tures because the initial state is unknown, the model is imperfect, and the input data is

in error. Data assimilation methods address this issue, and estimate the optimal initial

state considering the model, the available observations and their respective uncertainty.

The widely furnished altimetry data set represents the eddy front and is used here. The

computational cost of high-resolution models has so far constrained the choice of data

assimilation methods to simple optimal interpolation based schemes (Oey et al., 2005b;

Chassignet et al., 2005). At the time of writing the article, we could afford the model

integration of 10 members in real-time at such resolution. A 10-member ensemble is

still too small for using the Ensemble Kalman Filter (EnKF, Evensen , 2006), that usu-

ally requires O(100) dynamical members for oceanic application (Natvik and Evensen ,

2003). Therefore, we perform data assimilation with the computationally cheap En-

semble Optimal Interpolation (EnOI, see e.g. Oke et al., 2002; Evensen , 2003), which

allows for 3-D multivariate update and appears as relatively suited for assimilation

of altimetry data in the GOM (Counillon and Bertino, 2008). We then analyze the

capacity of a 10 dynamical members ensemble for the purpose of ensemble prediction

system (EPS) as often done in atmospheric applications (Molteni et al., 1996).

The benefit of EPS is two-fold: the ensemble mean provides a more accurate predic-

tion than each ensemble member separately; the ensemble spread can be used for pro-

viding confidence indices for the prediction. High-resolution ocean EPS is very recent.

Yin and Oey (2007) use a high-resolution bred-ensemble forecast with perturbations

of the initial state in the GOM. They found that the ensemble mean provides a closer

agreement to the observations than a conventional single forecast. We analyzed here

the capacity of the ensemble spread for providing confidence indices for the prediction.

In order to achieve this, the correct sources of error should be perturbed and the ensem-

ble should be sufficiently large.. In Counillon and Bertino (2008), it was shown that

the efficiency of the EnOI is sensitive to a data assimilation parameter, called α. We

therefore use different values of α for for generating a set of initial states. In Oey et al.

(2003), the boundary conditions (lateral and atmospheric) appear to influence the LC

stability, and recently Lugo-Fernández (2007) shows that the eddy shedding period

is non-linearly dependent on the initial state, the atmospheric perturbation and the

lateral boundary conditions. Our EPS thus uses different values of α as a proxy for the

perturbation of the initial state and random perturbations of the latter two sources of

error.



3

The outline of this paper is as follows. Section 2 presents the data assimilative

system. Section 3 analyzes the model sensitivity to each of the error sources considered,

with focus on the spatial scale of the anomalies generated, their amplitudes and growth

rate. Section 4.1 presents a sensitivity study for a data assimilation parameter and

examines the Gaussian properties of a 10-member perturbed ensemble. Section 4.2

compares the 10-member ensemble front position to ocean color data and to the front

calculated from altimetry data for the Eddy Yankee shedding event (2006). Section 4.3

investigates the benefits of the 10-member ensemble by evaluating the spread-skill

correlation both in space and time, for sea surface height (SSH). Conclusions are given

in Section 5.

2 The data assimilative system

A DA system provides an optimal model state, given a dynamic model and a set of

measurements, and their respective error statistics. The circulation in the GOM is

mainly quasi-geostrophic and the dynamics provide clear SSH signals. Furthermore,

near real-time altimetry observations of the ocean are achieved by combining data

from different satellites.

The sea level anomaly (SLA) data used for assimilation are the maps provided in

near real-time by SSALTO/DUACS on a 1/3◦ Mercator grid (Le Traon et al., 2003).

The standard deviation of the measurements is assumed to be constant, and it is using

the average value specified by the provider in the GOM area (3 cm). The measurements

are less accurate in the coastal area, therefore measurements are selected only in regions

deeper than 300 m, which correspond in the GOM to distances of at least 50 km from the

coast. Accordingly, a Gaussian covariance with a decorrelation radius of 50 km is used

for the observation error. Observations near the model boundary are not assimilated.

Observations are assimilated weekly.

2.1 Data assimilation

The data assimilation problem consists of accommodating a dynamical model with

measurements considering their respective error statistics. We use the EnOI, a data

assimilation method based on the EnKF, which uses a stationary ensemble composed

of model states as a square root representation of the covariance matrix. As a conse-

quence, this method is computationally cheap, but is still 3-dimensional, multivariate,

and conserves the linear properties such as the geostrophic balance (Oke et al., 2002;

Evensen , 2006). The EnOI analysis is computed in Equation 1.

ψψψ
a = ψψψ

f + αA
′
A

′T
H

T
“

αHA
′
A

′T
H

T + NSR
”

−1

(d − H ψψψ
f). (1)

The matrix A represents a large historical ensemble composed of model states

sampled over a long time integration. Here, we have used 2.5 years of weekly model

output (122 members in total). This ensemble is kept unchanged through the assimi-

lation cycle and is referred as “static ensemble”. A′ is the centered historical ensemble

(i.e. A′ = A − A), where the overbar denotes ensemble averaging. ψψψa and ψψψf are

the model analysis and forecast states, d is a vector of measurements, R is the mea-

surement error covariance matrix, NS is the size of the static ensemble and H is the
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measurement operator relating the prognostic model state to the measurements. An

ensemble of model states sampled over a long time period may have a variance that is

inadequate to represent the instantaneous forecast error variance, so that a factor α is

introduced to re-scale it.

The EnOI assumes that the temporal variability is representative of the instanta-

neous forecast error. This assumption is analyzed in detail in Counillon and Bertino

(2008). The EnOI appears to be relatively suitable for assimilation of altimetry in the

GOM, but shows some limitations that are circumvented using localization.

2.2 The nested model system

The forward model skill is very important in a DA system because it contributes to

the error growth from the initial state, and even more so in the EnOI since the er-

ror statistics depend on its ability to reproduce the dynamics. Chassignet et al. (2005)

demonstrate the skill of HYCOM for the GOM, and highlight the importance of hor-

izontal resolution for the representation of mesoscale dynamics. The inflow through

the Yucatan Straits also has a strong influence on the northward penetration of the

LC, on its stability after separation from the Campeche Bank, and therefore on the

timing of the shedding event (Oey et al., 2003; Abascal et al., 2003). A nested con-

figuration can satisfy these two requirements using reasonable computing facilities.

A coarser Atlantic system (TOPAZ) provides lateral boundary conditions to a high-

resolution model of the GOM (Figure 1) using lateral boundary techniques described

in Browning and Kreiss (1982). For the barotropic components (velocities and pres-

sure), the boundary conditions are computed exactly while taking into consideration

both the waves propagating into the regional model from the external solution and the

waves propagating out through the boundary from the regional model. For the slow

varying variables, i.e. baroclinic velocities, temperature, salinity and layer interface, a

simple relaxation technique is used. This constitutes the standard nesting procedure

with HYCOM, with an additional horizontal interpolation to the nested model grid.

TOPAZ is a real-time forecasting system for the Atlantic and Arctic basins using

HYCOM (Evensen (2006) Chapter 15; see also http://topaz.nersc.no/), which uses

advanced data assimilation techniques (i.e. EnKF). Due to a reduced inflow in the GOM

in the current operational forecasting system TOPAZ2, we use here TOPAZ3 prototype.

This prototype greatly improves the accuracy of the boundary condition but does not

include data assimilation. The TOPAZ3 model grid has a horizontal resolution between

11 and 16 km (approximately 1/8◦) created using a conformal mapping of the poles

to two new locations by the algorithm outlined in Bentsen et al. (1999). TOPAZ3 is

initialized from the GDEM3 climatology (Teague et al., 1990) and spun up for 16 years.

The TOPAZ3 system transports 19.5 Sv into the GOM, instead of the 23.8 Sv measured

in CANEK program during the same 10-month period (Sheinbaum et al., 2002). Note

that TOPAZ3 9-year average net transport is 22 Sv.

Our high-resolution model is set-up with a 5 km horizontal resolution, which is suf-

ficient to resolve the features such as mesoscale eddy considering the first-mode (baro-

clinic) Rossby radius (30-40 km). It uses a 4th order numerical scheme for treating the

advection of momentum in the primitive equations (Winther et al., 2007). To minimize

the necessary spin-up time, the initial state is interpolated from an equilibrated state

of TOPAZ3, and spun up for three years.
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Fig. 1 Mean SSH of TOPAZ3 interpolated into the high-resolution local model grid delimited
by the gray box.

In HYCOM the vertical coordinates are isopycnal in the open, stratified ocean,

but smoothly revert to z-level coordinates in the mixed layer and/or unstratified seas

(Bleck , 2002). Both models use 22 hybrid layers with the minimum thickness of the

top layer of 3m. The bathymetry is specified using the General Bathymetric Chart of

the Oceans database (GEBCO) with 1’ resolution, interpolated to the model grid. The

models are forced by the 6-hourly and 0.5◦ analyzed fields from the European Center

for Medium range Weather Forecasting (ECMWF). The models use monthly average

river discharge value taken from Dai and Trenberth (2002); Dümenil et al. (1993).

The diagnosed model SSH is the steric height anomaly that varies due to the

barotropic pressure mode, the deviations in temperature and salinity and does not

include the inverse barometer effect (atmospheric pressure) for consistency with the

SLA measurements. As the SLA needs to be referred to a mean SSH, a two-years

average of TOPAZ3 SSH is interpolated to the high-resolution grid (Figure 1). It shows

a maximum value induced by the resident LC base, and a positive track induced by the

passage of eddies that drift westward. Qualitatively, it compares well with the mean

dynamic topography based on satellite and in-situ measurements (Rio and Hernandez ,

2004).

3 Model sensitivity to different sources of error

In ensemble forecasting, the ensemble spread can be representative of the forecast

error if the correct sources of error are perturbed and the ensemble is sufficiently large.

Although the model is able to reproduce the dynamics of the region, it is in error

because of an inaccurate initial state and inaccurate lateral/atmospheric boundary

conditions. This error grows with the unstable mode of the flow. Lugo-Fernández (2007)

shows that in the GOM, the eddy shedding period is nonlinearly dependent on the

initial state, the lateral boundary conditions, and the atmospheric forcing. Therefore,

these three sources of error are considered in the following. We outline the method and

the assumptions made for simulating each source of error, analyze their response in the

model using twin experiment, and quantify their contribution in the ensemble spread

by integrating a small ensemble of 10 members.
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Table 1 Value of α used for each member.

Member 1 2 3 4 5 6 7 8 9 10

α 0.004 0.014 0.032 0.058 0.09 0.13 0.17 0.23 0.29 0.36

(a) (b)

Fig. 2 (a) Control run on the 4th of July 2006; (b) anomalies four weeks after assimilation
with α=0.36.

3.1 The initial state: data assimilation parameter

Oey et al. (2005b) observe that the major source of SSH errors over a four-week fore-

cast horizon is due to error in the initial state. A common approach to perturb the

initial state is to perturb the assimilated measurements. In the EnOI a static ensemble

represents the forecast error and a parameter α is introduced to re-scale their variances,

see Section 2.1. As the unknown instantaneous forecast error evolves with time, it is

unclear which value of α is optimal. Therefore, we select different values of α, reported

in Table 1, where lower values result in weaker assimilation and reversely. Too large

values of α can initiate noise and perturb the balance of the system, whereas too low

value can lead to a loss of accuracy. The sample encompasses the previously estimated

optimal value (i.e. ≈ 0.09, see Counillon and Bertino (2008)), and the extreme values

of the sample are chosen such that the assimilation produces efficient updates with

limited assimilation noise. This approach provides a set of different initial states, and

additionally allows for a sensitivity study to this parameter, although the associated

changes of the initial state are not strictly random.

To estimate the model sensitivity to the parameter α in the initial perturbation,

we compared a free model run to the run with the strongest assimilation (α=0.36)

on the 6th of June. Figure 2(a) is the SSH of the control run on the 4th of July, and

Figure 2(b) is the SSH anomalies (i.e. perturbed run minus control run) developed after

four weeks. The anomalies are large in scale and amplitude in the vicinity of the LC,

and become smaller and weaker in the western GOM. The anomalies obtained here are

similar in shape and in size to those obtained in Yin and Oey (2007) with perturbation

of the assimilated measurements. The changes in the parameter α initiate changes in

the position and orientation of the mesoscale features such as the LC and associated

eddies.
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3.2 The lateral boundary conditions

Many studies show the importance of the inflow through the Yucatan Straits for the

timing of the eddy shedding. Maul (1977) and more recently Bunge et al. (2002) show

that the vertical structure of the Yucatan straits inflow influences the life cycle of LC.

In Murphy et al. (1999); Candela et al. (2002) the flux of potential vorticity is charac-

terized by the passage of eddies that influence the timing of the shedding. Following

this, Cherubin et al. (2006) show that the vorticity gradients (vertical and horizontal)

enhance fast growing instabilities at the boundary of the LC. Those instabilities evolve

as cyclonic eddies that chop anticyclonic eddies off from the LC.

As mentioned in Section 2.2, the TOPAZ3 system provides lateral boundary con-

ditions in dynamical balance and relatively consistent with observations of the area.

As the current TOPAZ3 system does not use data assimilation, the inflow cannot be

expected to be in phase with the reality. Perturbation of the inflow timing is used here

to simulate this source of error, with a time lag to the boundary conditions. Alterna-

tively, one could apply 3-dimensional random perturbations to the lateral boundary

conditions, but preserving their physical consistency would be technically challenging.

Abascal et al. (2003) analyzed the variability of the energy and the transport through

the Yucatan Straits from measurements, and observed peaks in the 5-10, 20-40, and

50-100 day bands. However the time lag applied for the boundary condition should be

kept in a small range to avoid spurious effects from seasonal variations. The lag is

set randomly at the beginning of each model run between -37 and +37 days from the

actual date.

The sensitivity of the model to the proposed perturbation is analyzed in a twin

experiment, where one run is forced by lateral boundary conditions that are 37 days

older than the other one (the latter being the control run, Figure 2(a)). Figure 3 shows

the anomalies from the control run on the 4th of July developed after running both

models for four weeks. We observe dipoles of negative and positive anomalies at the

boundary of the LC. They have radii varying from 35 to 60 km, which agree relatively

well with the first baroclinic mode (30-40 km). These anomalies appear first at the

southern boundary of the model. Deviations from the main position of the Yucatan

Current result in bands of positive/negative anomalies that propagate through the

Cayman Sea. The narrowing of the Yucatan Straits and then the interaction with the

Campeche Bank induce small anomalies that propagate clockwise at the boundary

of the LC, approximately at 30 km/day. They fade out when passing to the eastern

side of the LC, probably due to interaction with the Florida Shelf. Those anomalies

correspond to small cyclonic and/or LC meanders (Schmitz , 2005).

We observed additional barotropic waves on the first day following the model

restart, which are caused by the sudden change in the boundary conditions. However,

these waves do not seem to disturb the model as they propagate out of the domain or

are damp out within a day.

3.3 The atmospheric forcing

Oey et al. (2003) show that the atmospheric forcing has also an influence on the eddy

shedding frequency. They use a larger model and attribute the change of frequency

to the remote influence of the perturbations on the water transported through the
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Fig. 3 Model SSH anomalies after four weeks of perturbations of lateral boundary perturba-
tions.

Fig. 4 Model SSH anomaly after four weeks of perturbations of the forcing fields.

Caribbean. In our system, such information is contained in the lateral boundary con-

dition and we analyze here the impact of perturbing the atmospheric forcing fields on

our high-resolution model domain only (Cayman Sea and GOM, see Figure 4).

The perturbations of the atmospheric fields are simulated with a spectral method

(Evensen , 2003). For simulating the residual error, we set the spatial decorrelation

radius to 50 km, which is the resolution of the atmospheric forcing fields used, and cor-

responds to perturbations that stimulate our high-resolution ocean model. The decor-

relation time-scale is of three days. The standard deviations of the fields perturbed

are: 0.095 N.m−2 for the eastward and northward drag coefficient; 1.6 m/s for the wind

speed; 22% for the cloud cover, and 3◦ Celsius for the air temperature.

The sensitivity of the model to the proposed perturbation system is analyzed in

a twin experiment, where one run is the control run and the other is forced by the

perturbed atmospheric forcing fields. Figure 4 shows the anomalies from the control run

after four weeks. The dominant signal is similar to the one observed with perturbations

of the lateral boundary condition, characterized by dipoles of positive and negative

anomalies (approximately 40 km), which propagate clockwise around the LC. Contrary

to perturbations of the lateral boundary, other anomalies of smaller amplitude are

observed throughout the whole domain.

The anomalies develop first uniformly throughout the basin, and then intensify in

specific areas such as in shelf areas (northern shelf and Campeche Bank), and at the

boundary of the large-scale features (LC, anticyclonic eddies). After two weeks, the

perturbations induce a small displacement of the Yucatan Current that produces simi-

lar anomalies as with perturbations of the lateral boundary condition. They dominate

in amplitude compare to the rest of the anomalies after approximately 20 days.
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3.4 Contribution from each source of error

The above results indicate that each source of error stimulates a different model re-

sponse in terms of anomaly growth and pattern. In order to quantify their respective

contributions to the ensemble spread, we have processed three separate ensemble runs

of 10 dynamical members each, where every ensemble run uses one source of error, as

described above.

Figure 5 shows with thick lines the daily anomaly in surface elevation between the

10-member ensemble mean ηp and the control run ηc, calculated as follows:

δη =

s

Z

Ω

(ηp − ηc)
2, (2)

where Ω is the model domain. The assimilation update produces an initial deviation

of 6.5 cm from the control run. With all perturbation systems, the perturbed ensemble

mean deviates from the control run.

The ensemble spread δηp is represented with error bars on Figure 5, and is calcu-

lated as follows:

δηp =

v

u

u

t

Z

Ω

1

Nd

Nd
X

i=1

(ηp − ηp(i))2, (3)

where Nd is the dynamic ensemble size (i.e. Nd = 10).

All sources of error induce a growing δη and δηp with time, which indicates that

the model is sensitive to all of them. After 35 days, the ensemble spread δηp is: 4.3 cm

with varying α, 2.8 cm with a perturbation of the lateral boundary, and 1.8 cm with a

perturbation of the atmospheric forcing fields. Varying the parameter α produces the

largest ensemble spread. This is expected because α controls the position and the size of

the Loop Current and associated eddies, whereas the two other types of perturbations

control the propagation of smaller-scale cyclonic eddies.

The perturbations of the lateral boundary produce a large spread initially, which

is caused by the barotropic adjustment consequently to the sudden change in the

barotropic term of the boundary condition (resp. assimilation noise). The same occurs

with large values of α that produce data assimilation noise. In both situations, the

spread is rapidly damped (within a day), and does not seem to create major distur-

bances in the model.

4 Ensemble forecast results

Our ensemble forecast is tested for the shedding of Eddy Yankee (2006). It is relatively

clear from MODIS Ocean Color data that the shedding occurs around the 19th of July,

reattaches to the LC from the east about a week later, and then remains attached for

two months.

The ensemble runs are started seven weeks prior to the shedding of Eddy Yankee, in

order to spin-up the perturbation system. In the first ensemble run (referred to as Run

0 in Figure 6), only the lateral and atmospheric boundary conditions are perturbed.

The six following ensemble runs include weekly assimilation of SLA and are hereafter

referred to as Run 1 to Run 6. The first assimilation is applied on the 7th of June 2006

and the last one on the 12th of July. After each assimilation the ensemble is run forward
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Fig. 5 Ensemble deviation from the control run for each source of error. The thick lines
represent the deviation from 10-member ensemble mean, and the error bars represent the
ensemble spread.

Fig. 6 Schematic of the ensemble forecast experiment. The arrows represent the model inte-
gration of the 10 members. The solid lines represent data assimilation of each these members
with the EnOI. The letters a-d correspond to the panels in Figure 8.

14 days, which corresponds to a 7-day forecast horizon with respect to the availability

of the near real-time SLA altimeter data (SALTO/DUACS maps are available with

one week of delay).

4.1 Influence of the data assimilation parameter α

This study has allowed for a sensitivity study of the parameter α. This parameter,

often referred as “strength” parameter (see Equation 1), is a critical parameter con-

trolling the performance of the EnOI. A large value will increase the forecast error

relatively to observation error and favor the initial agreement of the model forecast

with the available observations, but may cause side effects such as artificial gravity

waves (Counillon and Bertino, 2008).

In our experiment, each dynamic member keeps the same value of α over the

successive ensemble runs (see Table 1). Their respective daily RMS error is computed

against altimeter SLA track data, as follows:

ε(ψψψi) =

v

u

u

t

1

m

m
X

j=1

(Hψψψi(j) − d(j))2. (4)
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(a) (b)

Fig. 7 (a) Mean RMS error of each ensemble member compared to SLA track data for the
analysis period (0 to 7 days) in blue and forecast period (7 to 14 days) in red; (b) Difference
between the two periods.

The daily RMS error of each member ε(ψψψi) is averaged over the six successive

ensemble runs to reduce the variability caused by the random boundary perturbations.

The errors in Figure 7(a) are split between the analysis period (from day 0 to day 7;

blue bars) and the forecast period (from day 7 to day 14; red bars).

Members 1-3 have significantly higher errors than the other members. This indi-

cates that the value of α for these three members is too low to maintain as high an

accuracy as the other members, over successive assimilation cycles. Looking at members

4 to 10, the benefits of increasing α is no longer obvious for the forecast period (blue

bars). Additional runs would have reduced the variability caused by random boundary

conditions.

Oke et al. (2006)1 indicate that a high value of α might produce a better estimate

initially, but might deteriorate the forecast accuracy with time. In Figure 7(b), we

have calculated the difference of SLA RMS error between the forecast period and the

analysis period. From this plot we can see that the central members (4-6) have smaller

RMS error growth. This confirmed that increasing the value of α is beneficial up to a

value of 0.09, but any further increase (in particular values higher than 0.17) produces

a faster increase of the error.

We now look for the best estimator based on the ensemble forecast. In the Gaussian

case, the ensemble mean is the best estimator, as in Yin and Oey (2007). Here, the

three first members are outliers of the ensemble, and make the ensemble non-Gaussian.

As a consequence the ensemble mean is not the best guess although it is fairly close, see

Figure 7(a). As the other members appear as equally likely to give the best solution,

we have computed the reduced ensemble mean (computed without the three outliers),

which presents a lower RMS error than any other member. Although the runs that

use low value of α over several assimilation cycles are in average less accurate than

others, they may perform well on a single assimilation cycle. In order to maintain the

Gaussian properties of the ensemble, one should rather reset the value of α randomly

for each dynamical ensemble member at the beginning of each assimilation cycle.

1 Our notation of α follows that of Evensen (2003) but corresponds to α
2 in Oke et al.

(2006)
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4.2 Assessment of ensemble frontal positions

Chassignet et al. (2005) show that ocean color (OC) data is useful for identifying the

position of the fronts of the LC and the eddies. Furthermore, OC data provides an

independent source of validation, and has higher resolution than the altimetry data. In

Figure 8, the deep blue contour area represents the low chlorophyll water (<0.3 mg/m3)

that originates from the Caribbean Sea. The light green areas characterize the water

with higher chlorophyll concentration (>0.5mg/m3), which is usually found in areas of

high biological production along the coast or within cyclonic eddies. The high chloro-

phyll water often propagates along the outer edge of the LC eddies, and clearly defines

the front.

To evaluate the accuracy of the ensemble forecast, we compare the ensemble front

(10 cm SSH isoline) spaghetti plot with the OC data. We also add the front character-

ized by the 10 cm isoline in the altimeter SSH maps (hereafter referred to as SSH data).

Although OC data has a higher resolution, the SSH data may be a useful indicator of

the error in the assimilated SSH data, or be used to locate the front when clouds mask

the OC data. The model and the SSH data fronts are tuned to fit best with the OC

data2.

Only Run 5 and Run 6 are presented here because they cover the shedding and

pre-reattachment of eddy Yankee, and are thus the most interesting (and complex).

On the 12th of July (Figure 8(a)), the LC (dark blue in the OC) has cyclonic

eddies on either side of its neck (lighter blue in the OC map) with an eastern cyclonic

eddy penetrating deeply, which indicates a near shedding scenario. The front calculated

from SSH data lies within the ensemble front envelope except in restricted areas: the

northeastern and the northwestern tip of the LC, and south of the eastern cyclonic

intrusion (at about 25◦ N). At the western tip, the ensemble spread is narrow and

agrees relatively well with the OC front, whereas the SSH data front does not extend

far enough to the west. On the contrary, in the northeastern tip of the LC the ensemble

spread is large, and the SSH data front provides a better agreement with the OC front.

The model also has a tendency to locate the eastern cyclonic intrusion too far to the

south and has a large spread there.

On the 19th of July (where Figure 8(b) is the 7-day forecast and Figure 8(c) the

nowcast), one can observe a high concentration of chlorophyll (green in the OC) ad-

vected around the remaining LC. The eddy seems on the verge of separation, since only

a small filament connects the eddy to the LC from the west. The ensemble forecast

shows how ambiguous the situation is, as some members have already shed the eddy,

and others are still connected. Furthermore, the ensemble front envelope is suddenly

much wider than on the previous run pointing out the complexity of the situation. The

triangular shape of the eddy is observed in most of the members, but not as pronounced

as in the measurements. The SSH data front lies within the ensemble front envelope

(both in the 7-day forecast and in the nowcast), except in the northeastern tip of the

remaining LC (at about 25◦ N), the southeastern and northwestern tip of the eddy, and

its northern front. On the northeastern tip of the remaining LC, the ensemble fronts

are shifted to the south but the ensemble spread is large. Compared to the 7-day fore-

cast, the nowcast has slightly corrected the front and reduced the ensemble spread, but

this area is problematic in all panels of Figure 8, which might indicate a model bias.

2 The front delimitation is calculated in a subjective manner from SSH, and can produce
slightly different results depending on the threshold used.
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Once again, the southeastern front of the eddy seems better located in the model than

in SSH data, especially in the nowcast, where the spread is narrow and the ensemble

isolines follow the OC well. On the northwestern tip of the eddy the spread is large and

some members capture the complex shape of the front, especially in the nowcast. On

the northern front, the model does reproduce the complex shape of the eddy, induced

by a strong cyclonic eddy that interacts with Eddy Yankee. This cyclonic eddy was

previously too close to the coast, and was therefore misrepresented in the assimilated

SSH maps. This has consequences on the nowcast (started the 12th of July), and to a

lesser extent in the 7-day forecast (started on the 5th of July). This might explain why

the northern front is better located in the 7-day forecast than in the nowcast.

On the 26th of July (Figure 8(d)), the ensemble front gives a relatively good location

of the eddy except that members 1 and 2 place the northern front too far south.

However, the shape of the eddy in the model is too circular and does not reproduce

the complex northeastern front seen in the OC data. This is once again due to the

misrepresentation of the northern cyclonic eddy. None of the members have reattached

to the eddy yet, as in the OC, but the rotation of the eddy indicates a reattachment

in the following days.

4.3 Comparison of ensemble versus actual errors

In Section 4.2, the ensemble fronts show relatively good agreement both with the

OC and SSH data. We now quantify the accuracy of the ensemble mean forecast and

compare it with the ensemble spread. This diagnostic, often referred to as spread-

skill correlation, is commonly used in meteorology in order to provide confidence in the

prediction (Molteni et al., 1996). We analyze the correlation between the two quantities

evaluating whether the ensemble spread can predict: episodes of higher/lower accuracy,

and areas of larger/smaller error.

For this purpose, we compute the daily values of the ensemble mean RMS error

(i.e. ε(ψψψ) with respect to Equation 4) and the ensemble spread δη (see Equation 5) at

the location of the SLA track data. During a shedding event, the fast dynamics of the

eastern GOM contrast with the slower activity of the remaining domain, and the RMS

errors vary from day to day, due to irregular sampling of satellite tracks. Over five days,

the SSH tracks cover more uniformly the domain and provide a more stable estimate

of the RMS error. In Figure 9(a), the ensemble mean RMS error (solid line) and the

ensemble spread (dashed line) are averaged spatially over five day windows, except for

the first and last days. The nesting area is removed from the calculations because the

perturbation of the boundary condition implies an artificial correlation there.

δη =

v

u

u

u

t

1

mNd

m
X

j=1

Nd
X

i=1

(Hψψψ(j) − Hψψψi(j))2 (5)

The dynamical ensemble spread is 2-3 times smaller than the forecast error. This

underestimate is a common weakness of a small-sized EPS (Buizza et al., 2005).It indi-

cates that our dynamical ensemble is suboptimal, either because of the small ensemble

size or because the perturbation system still does not fully represent all of the model

errors. A pragmatic way to palliate for this is the use of ensemble inflation. However

we aim at providing confidence index with a small ensemble size, and focus on the

correlation.
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Fig. 8 Overlay of model ensemble fronts (pink line) with the non-assimilated OC map (con-
tour); for the nowcast on the 12th of July (a); for the 7-day forecast on the 19th of July (b);
for the nowcast on the 19th of July (c), and for the 7-day forecast on the 26th of July (d). Blue
color (resp. green) indicates low (resp. high) concentration of chlorophyll, and cloud covered
areas are in white. The thick black line represents the front derived from SSH altimeter maps,
and the red thick line is the ensemble mean

In the two first runs, the variability of the ensemble spread is almost zero as a

spin-up time of the ensemble is necessary (see Section 3.4). For the last three runs,

the model produces a larger spread, and the two curves vary in good agreement. In

particular, both the spread and the ensemble mean error present a maximum for the

shedding of the Eddy Yankee on the 19th of July (dashed line), and then reduce when

the eddy gets close to reattached on the 26th. Over the six ensemble runs, the two

curves present a correlation of 0.83 at a 99% confidence level. This indicates that the

ensemble spread can be useful for providing time-confidence indices of our forecast.



15

(a) (b)

Fig. 9 (a) Evolution of the ensemble spread (dashed line) and RMS errors (solid line). Every
ensemble run is plotted with a different color. The vertical dashed lines correspond to the
shedding date of eddy Yankee on the 19th of July and to the reattachment of Eddy Yankee on
the 26th of July. (b) spatial correlation for each run.

The ensemble mean RMS error is usually larger near the SSH front, and reaches

a maximum where cyclonic and anticyclonic eddies interact with each other. This is

because in these regions, the SSH gradients are larger and the dynamics more chaotic.

Here, we analyzed whether the ensemble spread can predict the area where the error

will grow faster. For this purpose, Figure 9(b) shows the spatial correlation between

the run average of the ensemble mean error and ensemble spread. There is almost

no correlation initially, but the correlation increases with successive runs and has a

maximum during the last two runs (R=0.37)3. The correlation is not large, but is

probably impaired by the error in the ensemble mean (when the front is misplaced).

Still, this result indicates that the ensemble can provide additional spatial information

regarding the forecast accuracy, in particular at the time during which the model is

the most inaccurate.

5 Conclusion

This work evaluates the skill of an ensemble prediction system (EPS) with a high-

resolution HYCOM model, for providing confidence indices for the prediction. For this

purpose, we aim at perturbing the known sources of error in our model, which are the

initial state, the atmospheric and the lateral boundary conditions. Our EPS uses differ-

ent values of α as a proxy for perturbing the initial state and random perturbations of

the latter two sources of error. Changes of α control the displacement of large features

in the GOM (e.g. LC, warm core eddies), whereas perturbations of both lateral and

atmospheric boundary conditions stimulate the propagation of smaller scale instabili-

ties, such as cyclonic eddies that circulate around the LC. It takes about three weeks

for these cyclonic eddies to develop and propagate around the LC. The variation of the

parameter α makes the largest contribution in the ensemble spread, but the other two

kinds of perturbations are also important because the growth of cyclonic eddies plays

a key role in the shedding process (Schmitz , 2005).

3 all the correlations are significant to 99% confidence level
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The skill of our EPS is tested on Eddy Yankee, and shows good capabilities. The

perturbation system used here is able to produce a significant spread of the front

position and mimic the dynamics of the eddy shedding. Qualitatively the front observed

from ocean color is almost always found within the ensemble spread. Quantitatively,

the ensemble spread still underestimates the RMS error, but is correlated with the

RMS error both spatially and temporally, after a spin-up time of 2-3 weeks. It implies

that additional uncertainty indices can be provided for the prediction.

The Gaussian properties of the ensemble are impaired by three outliers that have

undergone too weakly data assimilation. In order to obtain all the members equally

likely to give the best solution and to maintain the Gaussian properties of the ensemble,

the parameter α should be randomized.

A study of the influence of the magnitude of the parameter α on the forecast horizon

skill has been carried out. It appears that an optimal average value of this parameter

can be estimated for a given forecast horizon. Considering a 7-day forecast horizon, we

found that increasing the value of α over 0.17 induces a faster error growth, and was

not improving the result posterior to the nowcast stage, although the initial state is

closer to the observations.

This study could greatly benefit from increasing the number of members, and ex-

tending the period of study over other shedding event), in order to gain more stability

and thus more confidence in our results. This will be possible with increasing comput-

ing power. If the spread-skill correlation is confirmed, it should be possible to use such

information for data assimilation purposes.

Finally, there is a promising perspective with the use of the outer TOPAZ3 model

with the EnKF and the ECMWF EPS, which can provide ensemble boundary condi-

tions to the high-resolution model. This should avoid the initial barotropic instability

and there should be a useful synergy in using an ensemble both in the inner and in the

outer model.
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